Besoin d'une information ?

RECHERCHEZ LE CONTENU QUI VOUS INTÉRESSE :
Logo Faculté des Sciences et Techniques Le MansLogo Faculté des Sciences et Techniques  Le Mans
MA SCOLARITÉMA SCOLARITÉMA SCOLARITÉ
ACTUALITÉSACTUALITÉSACTUALITÉS

Acoustics

Présentation

I) INTRODUCTION : (a)   Non homogeneous differential equations: various examples in physics (b)    Toolbox : 1.Linear differential operator - 2. Boundary conditions (Fourier transform - Green’s identities) - 3.Dirac distribution - II) TIME-INDEPENDENT PROBLEM : (a)   Definition of the Green’s function - (b)    Interpretation - (c)    Homogeneous Boundary Conditions - (d) Reciprocity - (e)   Solution (Method of Variations of Parameters - Sturm-Liouville Problem - Eigenmode Expansion - Direct Method)  - III) 3D (and 2D) free space Green’s function : (a) Integral Formalism in Acoustics - (b) Introduction - (c) Green’s theorem - (d) Integral formalism in time domain - (e) Integral formalism in frequency domain - (f) Solving integral equations - (g) Boundary conditions - (h)  Examples of application

Objectifs

Knowledge:  Green’s function theory - integral formalism in time and frequency domain  _ Skills : be able to write and use the Green’s function in usual cases (Free space (1d to 3d) - reflecting boundaries and image sources - use the integral formalism in different simple applications - Acoustic field in small cavity - Acoustic field between two infinite wall - Sound radiation by a flat piston

Conditions d'admission

Acoustics I

Examens

Written exam - 2 hours - no documents allowed

Informations complémentaires

Literature References : Alastuey, A., Clusel, M., Magro, M., & Pujol, P. (2015). Physics and Mathematical Tools: Methods and Examples. World Scientific Publishing Company. - Duffy, D. G. (2001). Green’s Functions with Applications. Chapman & Hall.

En bref

Crédits ECTS 4.0

Nombre d'heures 40.0

Période de l'année
Printemps

Contact(s)

Composante

Lieu(x)

  • Le Mans

En savoir plus

On-line course